<div dir="ltr"><div style="font-size:12.8px"><img height="85" width="320" src="cid:ii_isrying40_157014a3e6ea5cb8" class="gmail-CToWUd"><br><br></div><div style="font-size:12.8px"><span style="font-size:12.8px;font-family:arial,helvetica,sans-serif">Dear all,</span><br></div><div style="font-size:12.8px"><font face="arial, helvetica, sans-serif"><br></font></div><div style="font-size:12.8px"><font face="arial, helvetica, sans-serif">Please support our community in Life and Environmental Sciences by attending our weekly events. </font><span style="font-family:arial,helvetica,sans-serif">This week's speaker in our Enviro-lunch brown bag seminar series will be <b>Dr. Jennifer Pett-Ridge</b>, a senior staff scientist at Lawrence Livermore National Laboratory (LLNL) who uses the tools of system biology and biogeochemistry to link identity and function in environmental microbial communities. The talk abstract follows below.</span></div><div style="font-size:12.8px"><font face="arial, helvetica, sans-serif" size="4" color="#0b5394"><br></font></div><div style="font-size:12.8px;text-align:center"><font face="arial, helvetica, sans-serif" size="4" color="#0b5394"><b><span style="font-size:12.8px"> </span>Dr. Jennifer Pett-Ridge</b></font></div><div style="text-align:center"><font color="#0b5394" face="arial, helvetica, sans-serif" size="4">Imaging microbes and minerals in the Rhizosphere</font></div><div style="font-size:12.8px"><font face="arial, helvetica, sans-serif"><br></font></div><div style="font-size:12.8px"><font face="arial, helvetica, sans-serif"><br></font></div><div style="text-align:center;font-size:12.8px"><font face="arial, helvetica, sans-serif"><span style="line-height:14.4pt;text-align:justify">Where: SE2-302</span><br></font></div><div><p class="MsoNormal" style="font-size:12.8px;text-align:center;line-height:14.4pt"><font face="arial, helvetica, sans-serif">When: Thursday (FEB 2nd, from 12-1:30PM)</font></p><div style="font-size:12.8px"><font face="arial, helvetica, sans-serif"> <br></font></div><div style="text-align:justify;line-height:14.4pt"><font face="arial, helvetica, sans-serif"><b>Talk Abstract</b><br></font></div>
<p class="MsoNormal" style="margin-bottom:0.0001pt;line-height:normal;background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial"><font face="arial, helvetica, sans-serif">Stimulated by exudates
and root decay, rhizosphere organisms control the critical pathways that move C
from root tissue to mineral surfaces, and ultimately regulate how soil C is
sequestered and stabilized. Yet we have a poor understanding of how roots affect
the molecular ecology of microbial decomposers, and how this translates into
altered rates of organic matter breakdown. In a collaborative UC
Berkeley-LLNL-LBL-University of Oklahoma project, we have examined the effects
of live and dead roots on decomposition in a grassland soil and quantified
characteristics of relevant bacterial and fungal communities using gene arrays,
transcriptomics, isotope tracing and proteomics. The presence of live roots
consistently suppressed rates of dead root litter decomposition and
significantly altered the abundance, composition and functional potential of
microbial communities. Plant-influenced soils had relatively more genes
involved in low molecular weight compound degradation (e.g. polysaccharides)
whereas unplanted soil microbes had more macromolecule degradation genes.
Higher abundances of proV and proW genes (glycine betaine transport) in planted
soils suggest microbes experience more severe water stress in planted soils.
RNA-seq and stable isotope probing analysis showed that living roots in the
presence of decaying root material had differential effects on soil food webs
and organisms participating in co-metabolism of exudates and decaying biomass.
We found significant differences between the microbial community composition
associated with different mineral types for both bacteria and fungi, and
nanoscale secondary ion mass spectrometry (NanoSIMS) imaging of these minerals
suggests fungal hyphae may be moving C directly from roots to mineral surfaces.
In sum, we find microbial functional potential is the primary factor driving
rhizosphere litter decomposition and that microbial functional capacities
differ in rhizosphere versus bulk soils.</font><font face="times new roman, serif" style="font-size:12pt"><span></span></font></p><p class="MsoNormal" style="font-size:12.8px;margin-bottom:0.0001pt;line-height:normal;background-image:initial;background-position:initial;background-size:initial;background-repeat:initial;background-origin:initial;background-clip:initial"><span style="font-size:12pt;font-family:"times new roman",serif"><br></span></p><p class="MsoNormal" style="font-size:12.8px;text-align:justify;line-height:14.4pt"><font face="arial, helvetica, sans-serif">We look forward to seeing you,</font></p><p class="MsoNormal" style="font-size:12.8px;text-align:justify;line-height:14.4pt"><font face="arial, helvetica, sans-serif"><br></font></p><p class="MsoNormal" style="font-size:12.8px;text-align:justify;line-height:14.4pt"><b style="font-size:14px"><font face="Cambria">Organizers for 2016-17: Rebecca Abney and Fernanda Santos</font></b></p><p class="MsoNormal" style="font-size:12.8px;text-align:justify;line-height:14.4pt"><span style="font-size:14px"><b><font face="Cambria">Faculty coordinator: Asmeret Asefaw Berhe</font></b></span></p></div>
</div>